If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=6x+5=0
We move all terms to the left:
x^2-(6x+5)=0
We get rid of parentheses
x^2-6x-5=0
a = 1; b = -6; c = -5;
Δ = b2-4ac
Δ = -62-4·1·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{14}}{2*1}=\frac{6-2\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{14}}{2*1}=\frac{6+2\sqrt{14}}{2} $
| 5x+5x+90=360 | | 5^2+6^2=c^2 | | 1/4m=-12 | | 4-3(x+3)=5x-13 | | 3(3x+10=7(x+1) | | 4^2+6^2=c^2 | | x(x+18)=(x+9)(x+9) | | 8x-24-6-3x=(-x+2)-5(5-x) | | 3(x+10=7(x+1) | | 5x-2x+7=11 | | 3(x+10=7(x+10 | | 5x^2=145x | | 5/13=t+6/13 | | 26-n=17 | | 7x+3=4x+1=65 | | 3x+(x-27)+(x+85)=203 | | 5-1(4x-15)=3(-6x-12) | | 4x-1=(12/5) | | 4,085=43(p+20) | | 7x+3=4x+165 | | 4m-7=4m-2-m | | -x/15=-8 | | 13+3=t | | 6n-5n=18 | | -5/6x-7/30x+1/5=-52 | | 8(-3d+2=88 | | MA=X,mB=2X.mC=2X+30 | | 52x+12x=1912+92x | | 3x+4+2x=1 | | 3m=5(m+3)-5 | | 10x+35-8=57 | | 7n^2+15n-18=0 |